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Outline:

• Brief description of collisional excitation soft x-ray lasers:
λλλλ ~ 3.5 nm - 60 nm (E ~ 400 eV - 20 eV)

• Characterization experiments for Ps-driven x-ray lasers:
   Ps-Driven X-ray Lasers PALS

- gain saturation    (10 µJ output, 1012 photons/pulse) 1015 ph./pulse
- beam divergence    (~2 mrad FWHM)
- x-ray laser duration    (2 - 8 ps FWHM) 100ps
- longitudinal coherence  (~400 µm 1/e)
- Line width    λλλλ/∆∆∆∆λλλλ = 50,000
- Brightness    1025 ph. mm-2 mrad-2 s-1 [0.1% BW]-1 1027

• Optical pump-x-ray laser probe photo-electron spectroscopy
experiments: picosecond soft x-ray surface analysis tool

• X-ray laser interferometry of High Energy Density (HED) plasmas

• X-ray laser probes of heavy ion beams (Th. Kuehl, GSI)

• Concluding remarks and Summary
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Soft x-ray laser requires creating plasma column with Ni-like
ion fraction and collisionally pumping 4d upper level

Pd18+

Upper level

Lower level

Ground state

Strong
collisional
excitation from
ground state

X-ray
laser Te ~ ∆∆∆∆E ~ 450eV∆∆∆∆E

4d - 4p:
14.7 nm (84.5 eV)
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Requirement for atomic spectroscopy to determine Ni-like ion
x-ray laser lines accurately

PRA 58, R2668 (1998)



Two Stage Process

Long laser pulse: 1 - 2 J
- plasma formation
- ionization
- delay for relaxation of
  density gradients

Short laser pulse: 2 - 5 J
- excitation

X-ray laser 
beam

ps and ns 
driving lasers

Target

1 cm ×××× 100 µm
(L ×××× W)

Tabletop

Laser

Driver

Transient scheme uses 1 ps, 5 - 10 TW laser pulse
to optimize excitation - Tabletop X-ray Laser

P.V. Nickles et al, PRL 78, 2748 (1997)
Yu. V. Afanasiev and V.N. Shlyaptsev, Sov. J. Quant. Electron. 19, 1606 (1989).
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• Pump energy: <10 J, ~2 - 7 J

• High gain: 25 - 65 cm-1

• Target length: ~ 1 cm

• Wavelength: 119 Å (104 eV)

• High shot rate: 1 shot/4 min.
50-100 shots/day

• XRL duration: 3 - 7 ps

• Inexpensive slab targets



LLNL COMET tabletop, laser-driven facility produced
pulsed ps duration x-ray laser at 1 shot/4 minutes
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Strong lasing can be generated on 4d - 4p line of
various of Ni-like soft x-ray laser lines

13

J. Dunn, Y. Li, A.L. Osterheld, J. Nilsen, J.R. Hunter, V.N. Shlyaptsev,
Phys. Rev. Lett 84, 4834 (2000)
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Traveling wave drives Ni-like Pd at 14.7 nm into gain
saturation regime with 5 - 7 J energy in line focus

Ni-like Pd gain with traveling wave

• Small signal gain of 41 - 62 cm-1

• 100x enhancement with TW

• gL = 18, output energy ~ 12 µJ

• 0.5 - 1.5 J, 600 ps , 4.5 - 5.5 J, 1.3 ps

Traveling wave
No Traveling wave

• Radex simulations indicate maximum deflection
angle (ne/nc)

0.5 reveals optimal amplification at ne
~0.9 x 1020 cm-3
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Pd angular pointing and divergence
under amplification

Higher efficiency of Ni-like XRL well matched to small driver

Output still increasing with length - extract more XRL energy
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Characteristics of 14.7 nm x-ray laser profile

15

Ni-like Pd 14.7 nm Horizontal
Beam Divergence and Far-Field Pattern

Narrow horizontal beam divergence 2.8 mrad (FWHM) but beam has multi-mode
structure - observe some interference in far-field from multiple coherent sources

Ni-like Pd Near-Field Pattern
16 x 80 µm2
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Back-thinned
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M1, 45° Mo:Si
Flat Mirror

X-ray Laser
Pumping
Beams

M2, 45° Mo:Si Flat
Mirror

500fs X-ray Streak
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R. Shepherd,
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(LLNL)

500 fs x-ray streak camera used to measure temporal duration
of x-ray laser in 2-D near-field imaging setup

J. Dunn et al, submitted to Phys. Rev. A (2005).

Experimental Criteria:
• Spatially resolve x-ray laser emission, localize continuum emission
• Minimize instrumental broadening effects (no chirp from spectrometer grating)
• Geometry should be similar to applications
• Control x-ray laser intensity (F1, F2, F3), repeatability, many shots
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Michelson mirror M2 motorized to align instrument and adjust fringes

Beam-splitters and instrument multilayers fabricated at l'Institut d'Optique, Université Paris-Sud

Instrument Parameters

Multi-layer thin-foil beam
splitters:

89 nm Si3N4 substrate with 4.5 bi-
layers of Mo:Si on each side.

Reflectivity: 14%
Transmission: 15%

Arm length 34 cm

Estimated Throughput: 0.007/arm

Imaging Mirror S2, f= 50 cm

Magnification: 7x
Laser Parameters:
LP:  600 ps, 1054 nm (2 J, 2 ×××× 1011 W cm-2)
SP:  13 ps, 1054 nm (5 J, 3 ×××× 1013 W cm-2)

SP:  6ps (5 J, 6 ×××× 1013 W cm-2)

Michelson Interferometer experimental setup used to measure
longitudinal coherence of 14.7 nm x-ray laser
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Interferogram measured for 6 ps pumping pulse and Michelson
interferometer optimized

CCD covers 1700 x 1700 µm2

region

Good fringe visibility up to 70%,
V = (Imax – Imin)/(Imax + Imin)
 measured across intensity

Observe most of the x-ray laser
beam profile

Variation in output across beam

Observe repeatable structure
from shot-to-shot

Michelson interferometer uses amplitude division technique, interference fringes
generated when:
(1) Phase fronts of two arms are spatially overlapped, co-propagated
(2) Arm lengths are equalized to accuracy better than source coherence length, Lc



Piaski, 09-08-05-XRL-JD-15

Fringe visibility vs path difference for two pumping pulses 6 ps
and 13 ps yields coherence length - spectral line width from FT

R.F. Smith et al., Opt. Lett. 28, 2261 (2003).

Fringe visibility vs
path difference

Fringe visibility measured in same
three positions of interferogram from
shot-to-shot to improve statistics

50% visibility results from unequal
throughput in two arms

Gaussian fit to data

6ps data: 342 ± 24 µm 1/e half-width

13ps data: 400 ± 35 µm 1/e half-width

Equivalent Gaussian spectral FWHM of
0.34 pm and 0.29 pm for 6 ps and 13 ps

(λλλλ/∆∆∆∆λλλλ = 43000 and 50600 for 14.7 nm)

Measured time response of 4.5 ps saturated x-ray laser indicates 4x
transform limit - 2x for unsaturated output
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Tabletop x-ray lasers are extremely bright, inexpensive
compact sources that complement future FELs

Parameters for collisional
 X-ray Laser

GRIP COMET
Parameters XRL XRL

Pump (J): 150 mJ 5 J
XRL (J): 10 nJ >10 µJ
Photons: 109  1012

Rate (Hz): 10 0.004
λλλλ (nm): 18.9 12 - 47
Source (µm2): 9 ×××× 20 25 ×××× 100
Div. (mrad2): 3 ×××× 5 2.5 ××××    6
Pulse (ps): 2 2 -  8
Peak B*:  2.0 ×××× 1023  1.6 ×××× 1025

Average B*‡:  3.7 ×××× 1012  1.3 ×××× 1011

* [Ph. mm-2 mrad-2 s -1 (0.1% BW) -1]
‡ For 10 Hz operation

PALSPALS



Time-of-Flight Photoelectron Spectroscopy requires
pulsed source (84.5 eV x-ray laser photons)

•  X-ray laser photoionizes surface atoms

• Extracted shallow core-level and VB
photoelectrons have velocity distribution
(kinetic energy distribution ≤≤≤≤ 84.5 eV )

•  Time-of-flight (TOF) spectrometer used to
energy analyze photoelectrons

• Electrons travel through drift tube detected by
micro-channel plate (MCP) and fast digitizer

• Capable of high energy resolution with high
throughput

Measure electron kinetic energy by time-of-flight technique

Binding energy BE, work function φφφφs
Kinetic energy of emitted electrons:
      
KE = hv - BE - φφφφs

35Piaski, 09-08-05-XRL-JD-17



COMET 85 eV x-ray laser has advantages over other laser
sources for fast probing of shallow d states

36Piaski, 09-08-05-XRL-JD-18



Pulsed 84.5 eV soft x-rays probe material surfaces, producing
photoelectrons: Electron Time-of-Flight results for bulk Ge
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0 Vprompt
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Ge 3d

A. J. Nelson, J. Dunn, T. van Buuren, and J. Hunter, “X-ray laser-induced photoelectron
spectroscopy for single-state measurements”, Appl. Phys. Lett. 85, 6290 (2004).

Observe Valence Band (VB) and shallow core 3d photoelectron features using e-TOF
spectrometer: better energy resolution is observed by applying bias to drift tube

Apply technique to dynamic optical pump - x-ray laser probe experiments

Experimental Setup for X-ray Laser induced
Photoelectron Spectroscopy

In collaboration
with Art Nelson
C&MS, LLNL

In collaboration with Art
Nelson, C&MS (LLNL)
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Pump-Probe: Single shot e-ToF data from static and laser-
heated ultrathin foils (50 nm Cu/20nm C)
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• Pump 527 nm, 400 fs laser, 0.1 – 2.5 mJ energy in 500 x 700 µm2 (FWHM) spot.
• Intensity conditions of  0.07 – 1.8 x 1012 W cm-2 intensity.
• Cu d band emission evident in valence band

Pump 2.5 mJCu Energy Levels Pump 300 µJ

Free electronsBound electrons
above Fermi level

A.J. Nelson et al., submitted to Appl. Phys. Lett. (2005)
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Diffraction Grating X-ray Laser Interferometer Layout:
Mach-Zehnder configuration for 14.7 nm Ni-like Pd x-ray laser

2000Å
Zr+1000Å
polyimide

filter

Alignment
cross-hairs

900 l/mm
grating

1st
order

0th
order

0° Mo:Si ML
spherical mirror

f=25cm

Au-coated
output
mirror

900 l/mm
grating

Au-coated
mirror

Au-coated
mirror

IMAGING
MIRROR

DGI IR
alignment

laserCOMET Beam 3
600 ps, 3 J

Line
focus

plasma

45° Mo:Si ML
flat mirror

Back-
thinned

CCD

45° Mo:Si ML
flat mirror

14.7 nm x-ray
laser beam

Detector spatial resolution ~0.5 µm
Magnification 22x setup
Gratings are beam splitters
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Sequence of ps interferograms shows formation of remarkable
dynamic plasma features at all times

46

Flat Al targets heated by 3 J, 12 µm wide, 600 ps pulse at >1013 W cm-2

• 2-D lateral expansion observed early on - plasma pressure gradients
• On-axis dip formed due to instability - high local Te, focal spot geometry

• Fringe reversal at late time due to bound electrons in Al - Al3+ ions

Original
focal spot

Piaski, 09-08-05-XRL-JD-22



Experiments used to benchmark 2-D LASNEX for high
energy density laser-produced plasmas - real tool

• Small 12 µm width results in substantial 2D plasma expansion - reduced on-axis density

• 1D and 1.5D LASNEX simulations do not accurately model plasma conditions

• 2D simulations use experimental focal spot and temporal pulse shape

• Plasma pressure gradients, radiative heating and thermal conduction produces side lobes

Short wavelength, ~ 1 µm spatial and ps time resolution essential

47

1mm Al targets
3 J, 600 ps pulse
12 µm x 3.1 mm
I ~1013 W cm-2

Interferogram Expt. Density Profile 2-D LASNEX at t = +0.26 ns

1020 cm-3Distance (µm)

Observe ne >
4x1020 cm-3

Piaski, 09-08-05-XRL-JD-23
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Table-top capillary discharge Soft X-ray lasers have
been used in numerous applications

1. Interferometry of laser-
created plasmas

2. EUV microscopy 3. Nanopatterning

5. Nanocluster Spectroscopy

• J.J. Rocca et al, Phys. Of
Plasmas, 10, 2031 (2003).

• F. Brizuela et al, Optics Express,
13, 3983, (2005)

• M.G. Capeluto et al, IEEE
Transactions on
Nanotechnology, (in press),

• J. Juha et al, Appl. Phys. Lett. 86,
034109 (2005).- M. Grisham et al,
Optics Letters, 29, 620 (2004).

47 nm lines

 2 µm

250 nm
lines/spaces

100 nm lines/
800 nm spaces

x 750

4. Laser Ablation
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Laser spectroscopy to measure nuclear
properties …

isotope shift ⇒ changes of charge radius
hyperfine structure ⇒ nuclear spin
hyperfine splitting ⇒ moments

Problem: too many electrons

go to few-electron systems:
• H-like: very simple, but excitation energies
too high, nuclear size effect small
• He-like: same

⇒ how about Li-like ??

(Th. Kuehl, GSI)



… on Lithium-like Ions

100

200

300

50 60 70 80 90

nuclear charge Z

tr
a
n

s
it

io
n

 e
n

e
rg

y
 /
e
V

4

6

8

10

w
a
v
e
le

n
g

th
 /
n

m

2S1/2 – 2P1/2

2s

2p

calculations are getting very precise !
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… using the Doppler-shift

wavelength tuning by fine variation of velocity

⇒ source doesn‘t need to be tunable !

β
β

λλ
+
−′=

1
1c

v=β λ

(Th. Kuehl, GSI)



many possible candidates
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Overlap of beams

pump
laser

x-ray laser

ion beam

steerer

5 mrad
20 mm

collimation
mirror

turning
mirror 2.5 m 4 m

beam
monitor

(Th. Kuehl, GSI)



We have recently demonstrated 10 Hz, 18.9 nm x-ray laser
using grazing incidence pumping (GRIP) using 150 mJ laser
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Other x-ray laser schemes proposed but not yet observed:
Energy level diagram for Nd-like U 5f - 5d transition at 6.7 nm

Joe Nilsen, LLNL
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Summary:

• Continue to develop soft x-ray lasers and applications at LLNL as
compact ultra bright x-ray source - ps duration

- high peak brightness
- short wavelength
- coherence
- highly monochromatic

• Optical pump-x-ray laser probe photo-electron spectroscopy
experiments: picosecond soft x-ray surface analysis tool

• X-ray laser interferometry of HED plasmas

• X-ray laser probes of heavy ion beams
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